Preliminary communication

COMBINED DECARBOXYLATION OF THE FORMATO LIGAND AND REDUCTIVE ELIMINATION OF HYDRIDO AND ARYL GROUPS IN THE SYNTHESIS OF RUTHENIUM(0) COMPLEXES. METHYLATION OF RUTHENIUM(0) WITH FORMALDEHYDE

W.R. ROPER* and L.J. WRIGHT

Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received May 5th, 1982)

Summary

The formato ligand is readily introduced into the 5-coordinate complexes MRCl(CO)(PPh₃)₂ (M = Ru or Os, R = o-tolyl) giving 6-coordinate MR(η^2 -O₂CH)(CO)(PPh₃)₂. In the presence of excess PPh₃ thermal decarboxylation of the osmium complex leads to the stable aryl, hydride, OsRH(CO)(PPh₃)₃. A similar reaction with RuR(η^2 -O₂CH)(CO)(PPh₃)₂ is accompanied by reductive elimination of RH and formation of "<u>Ru(CO)(PPh₃)₃</u>" which as a solid is *ortho*-metallated, i.e. exists as Ru(C₆H₄PPh₂)H(CO)(PPh₃)₂. Decarboxylation and reductive elimination in the presence of bis(diphenylphosphino)ethane (dppe) give the zerovalent Ru(CO)(dppe)₂. "Ru(CO)(PPh₃)₃" undergoes a most unusual reaction with formaldehyde forming Ru(CH₃)(η^2 -O₂CH)(CO)(PPh₃)₂.

Several preparative routes to zerovalent complexes of ruthenium and osmium involve intermediate divalent hydrido complexes. Of the following three possible routes:

$$L_{5}M^{II}H]^{+} \xrightarrow{\text{base}} L_{5}M^{0}$$
(1)

$$L_4 M^{II} H_2 \xrightarrow{L} L_5 M^0$$
(2)

$$L_4 M^{II} RH \xrightarrow{L} L_5 M^0$$
(3)

0022-328X/82/0000-0000/\$02.75

©1982 Elsevier Sequoia S.A.

(1) has been used with some success, e.g. for $\operatorname{Ru}(\operatorname{CO}_2(\operatorname{CN}_p-\operatorname{tolyl})(\operatorname{PPh}_3)_2[1]$, $\operatorname{Ru}(\operatorname{CO}_2(\operatorname{PPh}_3)_3$ and $\operatorname{Os}(\operatorname{CO}_2(\operatorname{PPh}_3)_3[2]$, and for $\operatorname{Os}(\operatorname{CO})(\operatorname{CS})(\operatorname{PPh}_3)_3[3]$. A possible complication when the ligands include groups like CS or carbene is attack by base at the ligand rather than a deprotonation at the metal. A general observation, relevant for methods (2) and (3) is that reductive elimination of RH is often more facile than reductive elimination of H₂ [4]. Method (3) is therefore appealing provided that the required L₄MRH precursors are accessible. We describe here a simple synthesis of several L₄MRH complexes from thermal decarboxylation of the corresponding formates, and the further reductive elimi nation of RH leading to ruthenium(0) complexes. The R group chosen was the rather bulky *o*-tolyl group in order to facilitate elimination. In addition, a reaction of a ruthenium(0) complex with formaldehyde which leads to a ruthenium(II) methyl derivative is reported.

The red 5-coordinate complexes MRCl(CO)(PPh₃)₂ result from reaction of MHCl(CO)(PPh₃)₃ with HgR₂ [5]. Further reaction with sodium formate introduces the formato ligand in MR (η^2 -O₂CH)(CO)(PPh₃)₂. The *dihapto* nature of the formato ligand is indicated by the pale-yellow colour of these molecules, suggesting 6-coordination and IR data (see Table 1) supports this conclusion. When OsR (η^2 -O₂CH)(CO)(PPh₃)₂ is heated in benzene under reflux in the presence of PPh₃, CO₂ is lost and colourless OsRH(CO)(PPh₃)₃ is formed. OsH₂(CO)₂(PPh₃)₂ similarly results from Os(η^1 -O₂CH)₂(CO)₂(PPh₃)₂ [6]. Carbonylation of OsRH(CO)(PPh₃)₃ readily replaces a labile phosphine giving OsRH(CO)₂(PPh₃)₂.

These compounds join $Os(CH_3)H(CO)_2(PPh_3)_2$ [7] as further examples of stable *cis*-hydrido-alkyl (or -aryl) complexes of osmium(II).

A similar decarboxylation of $\operatorname{RuR}(\eta^2-O_2\operatorname{CH})(\operatorname{CO})(\operatorname{PPh}_3)_2$, best carried out in t-butanol, is accompanied by reductive elimination of RH and leads directly to "Ru(CO)(PPh₃)₃". As a solid this material is formulated as $\operatorname{Ru}(C_6H_4\operatorname{PPh}_2)H(\operatorname{CO})$ -(PPh₃)₂ since IR activity at 1554 and 1415 cm⁻¹ is characteristic of ortho-metallated triphenylphosphine [8]. The complex also exhibits an IR band at 1949 cm⁻¹ assigned to ν (RuH).

Benzene solutions of this complex react as zerovalent $Ru(CO)(PPh_3)_3$ which is isoelectronic with $RhCl(PPh_3)_3$. H₂ gives $RuH_2(CO)(PPh_2)_3$. HCl gives

 $RuHCl(CO)(PPh_3)_3$, CO gives $Ru(CO)_3(PPh_3)_2$ and aldehydes are decarbonylated giving $Ru(CO)_2(PPh_3)_3$. An intriguing reaction with formaldehyde gives a ruthenium(II) methyl derivative.

Any 1/1 formaldehyde complex $\operatorname{Ru}(\eta^2-\operatorname{CH}_2O)(\operatorname{CO})(\operatorname{PPh}_3)_3$, analogous to $Os(\eta^2-CH_2O)(CO)_2(PPh_3)_2$ [9], which may be formed initially, must undergo a ring-expansion reaction with a further molecule of formaldehyde forming the metallacycle depicted before rearrangement to the observed product $\operatorname{Ru}(\operatorname{CH}_3)(n^2-O_2\operatorname{CH})(\operatorname{CO})(\operatorname{PPh}_3)_2$. A metallacycle similar to the postulated intermediate is formed by hexafluoroacetone on nickel(0) [10].

TRa	AND	¹ H NM	R DATA	FOR	RUTHENIUM	OSMILIM	COM

TABLE 1

Compound ^b	ν(CO) (cm ⁻¹)	Other bands (cm ⁻¹)	Chemical shift (τ) ^C	
$OsR(\eta^2-O_2CH)(CO)(PPh_3)_2$	1901	1548, 1360 (formate)		
$RuR(\eta^2-O_2CH)(CO)(PPh_3)_2$	1913	1548, 1358 (formate)		
OsRH(CO)(PPh,)	1903	2220w v(OsH)		
OsRH(CO) ₂ (PPh ₃) ₂	2026,1968	1914 v (OsH)	15.09, t, 1H, Os <i>H</i> ² J(HP) 23 Hz	
"Ru(CO)(PPh ₃) ₃ "	1922	1949m v(RuH)		
"Os(CO)(PPh ₁) ₃ "	1913	2022w v(OsH)		
Ru (CO) (dppe),	1833			
<i>cis</i> ·[RuH(CO)(dppe) ₂] ⁺	1982		17.80 dq, 1H, RuH ² J(HP) _{trans} 70; ² J(HP) _{cis} 20 Hz	
RuCH ₃ (7 ² -O ₂ CH)(CO)(PPh ₃) ₂	1915	1549, 1352 (formate)	9.55, t, 3H CH ₃ ³ J(HP) 5.5 H2 3.10, t, 1H, O ₂ CH, ⁴ J(HP) 1.9 Hz	

^aMeasured as Nujol mulls; all bands strong unless indicated otherwise. ^b Satisfactory elemental analyses obtained for all compounds. ^c In CDCl₃ solution.

If the decarboxylation of RuR $(\eta^2 - O_2 CH)(CO)(PPh_3)_2$ is carried out in the presence of dppe the yellow-orange, very air-sensitive, $Ru(CO)(dppe)_2$ is formed. This is readily protonated by acids to cis-[RuH(CO)(dppe)₂]⁺ (see Table 1 for data relating to these compounds).

OsRH(CO)(PPh₃)₃ also undergoes slow reductive elimination upon prolonged heating under reflux in benzene (0.5 h) forming $Os(C_6H_4PPh_2)H(CO)(PPh_3)_2$.

We thank the N.Z. Universities Grants Committee for grants towards instrumental facilities and the award of a Postgraduate Scholarship to L.J.W. We also thank Johnson Matthey Ltd. for a generous loan of Ruthenium and Osmium.

References

- 1 D.F. Christian and W.R. Roper, Chem. Commun., (1971) 1271.
- 2 B.E. Cavit, K.R. Grundy and W.R. Roper, J. Chem. Soc. Chem. Commun., (1972) 60.
- 3 T.J. Collins and W.R. Roper, J. Organometal. Chem., 139 (1977) C56.
- 4 J.R. Norton, Accounts Chem. Res., 12 (1979) 139.
- 5 W.R. Roper and L.J. Wright, J. Organometal. Chem., 142 (1977) C1.
- 6 K.R. Laing and W.R. Roper, J. Chem. Soc. A, (1969) 1889.
- 7 C.E.L. Headford and W.R. Roper, J. Organometal. Chem., 198 (1980) C7.
- 8 D.J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc. (Dalton), (1979) 1283.
- 9 K.L. Brown, G.R. Clark, C.E.L. Headford, K. Marsden and W.R. Roper, J. Amer. Chem. Soc., 101 (1979) 503.
- 10 M. Green, S.K. Shakshooki and F.G.A. Stone, J. Chem. Soc. (Dalton), (1971) 2828.